Birnessite-type MnO2 nanosheet arrays with interwoven arrangements on vapor grown carbon fibers as hybrid nanocomposites for pseudocapacitors.
نویسندگان
چکیده
Manganese dioxide nanosheet arrays with interconnected arrangements are easily synthesized on vapor grown carbon fibers (MnO2 NSAs@VCFs) by a simple wet-chemical method at low temperature. The conductive nature of the VCFs serves as a scaffold and easily reduces potassium permanganate species for the formation of hierarchical MnO2 NSAs@VCFs. When utilized as an electroactive material for pseudocapacitors, the sophisticated configuration of the nanocomposite provides an effective electrochemical activity and an electron pathway for higher electrochemical performance in 1 M Na2SO4 aqueous solution. The hierarchical MnO2 NSAs@VCFs exhibit a maximum specific capacitance of 115.3 F g-1 at a current density of 0.5 A g-1 with an excellent cycling stability of 85.6% after 2000 cycles at a current density of 5 A g-1. Such facile and cost-effective fabrication of a metal oxide nanocomposite with improved electrochemical performance allows it to be considered as a promising electroactive material for energy storage devices.
منابع مشابه
Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance.
Mesoporous MnO2 nanosheet arrays have been directly grown on nickel foam current collectors and exhibited a reversible capacity as high as 1690 mA h g(-1) even after one hundred cycles at 100 mA g(-1). They also reveal good rate capability and excellent cycling stability.
متن کاملLarge-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors
Electrochemical performance and production cost are the main concerns for the practical application of supercapacitors. Here we report a simple and universally applicable method to prepare hybrid metal oxides by metal redox reaction utilizing the inherent reducibility of metals and oxidbility of for the first time. As an example, Ni(OH)2/MnO2 hybrid nanosheets (NMNSs) are grown for supercapacit...
متن کاملHydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors
MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous...
متن کاملDistribution of Residual Stresses in Polymer Reinforced Carbon Nanotubes and Laminated Carbon Fibers
In this study, the distribution of residual stress in fiber-reinforced nanocomposites is investigated. Fiber-reinforced nanocomposite is composed of three substances: carbon fiber, carbon nanotube (CNT), and polymer matrix. Unit cells in hexagonal packing array with different arrays as unit cell, 3*3 and 5*5 arrays have been selected as suitable for finite element analysis of residual stresses....
متن کاملUltrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 100...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 45 48 شماره
صفحات -
تاریخ انتشار 2016